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Abstract

We study a localized version of kernel ridge regression that can continuously, smoothly
interpolate the underlying function values which are highly non-linear with observed data
points. This new method can deal with the data of which (a) local density is highly uneven
and (b) the function values change dramatically in certain small but unknown regions. By
introducing a new rank-based interpolation scheme, which can be interpreted as a variable
bandwidth Nadaraya-Watson Kernel Regression, the interpolated values provided by our
local method can be proven to continuously vary with query points. Our method is scalable
by avoiding the full matrix inverse, compared with traditional kernel ridge regression.

1 Introduction

For decades the idea of interpolating data has been scorned in machine learning, since it was prone to overfit,
and then not generalize to new data. However in the last decade, models with significantly more parameters
than data points have become the norm, and these models achieve the best generalization when they have
little or no error on the training data. This suggests we should revisit models that can be designed to
explicitly interpolate the data.

In this paper we study (mostly low-dimensional) regression problems, but with somewhat non-standard
assumptions. First, we assume the noise is very small so the model should more-or-less interpolate the
training data. Second, we assume individual data points may be important for the model in a local sense.
The data may be strategically placed either due to generation from a physical simulation, or because it
was chosen adaptively to fill in areas that lacked coverage. Third, we assume that there is a smooth or
continuous underlying model behind the data, e.g., driven by physics or some natural phenomenon. However,
the underlying model itself can be complicated with many local features at various scales, which makes
the exact recovery from random sampling challenging. Hence the estimate should be smooth, and at least
continuous. Fourth, the data size may be reasonably large so (a) a full matrix inverse may be impractical in
building the model, and (b) the model evaluation should be much faster than linear in the data size.

One approach towards dealing with these challenges is to keep the estimated model “local” in that for any
query q ∈ Rd the estimated model only depends on nearby data points. Evaluation time should only depend
on these local points or simple parameters. Starting from this possible vantage, we propose a localized kernel
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ridge regression (local krr) which adjusts the bandwidth/scale locally, is very scalable, and moreover is
continuous while also nearly interpolating the data.

One motivation for this modeling and new algorithm is the observation (Belkin et al., 2018b; 2019a) that many
modern large-scale machine learning models achieve 0 or nearly-0 error on training data. This has led to the
study of simpler models where interpolation can be achieved (Belkin et al., 2019b;a; Hastie et al., 2020; Belkin
et al., 2018b; Liang & Rakhlin, 2020). A second motivation arises in modeling physics simulations (Pope,
2013; Van Oijen & De Goey, 2000) where data is generated according to a well-behaved and constrained
pattern, and with very little error compared to the traditional complexity of the model and sampling of the
data. Such data may be generated by simulating non-linear PDE systems with uneven local density as more
data points are generated and more detail is required where the PDE evolves slowly, and fewer data points
and less detail where it evolves rapidly. Models with a global scale parameter or traditional error measures
(e.g., RMSE) can miss important features. Both settings have a scale where the cost of model learning and
evaluation is non-trivial.

To deal with challenges posed in such datasets, our local krr builds (nearly) interpolating regression models
centered around a set of model points M chosen to adapt to data density. Using a fast k-nearest neighbor
(KNN) search, we determine which local data X near each mi ∈ M to be included in building a local
model. At any query point q, we use a weighted average of nearby pre-built models, as determined by their
model points. We introduce a new rank-based interpolation scheme to ensure that this weighted average
continuously varies with the query points, and hence the full model is continuous. As elaborated on in
Section 4.1, this can be interpreted as a variable-bandwidth Nadaraya-Watson kernel regression estimator
over the local models. Our analysis guarantees the continuity of such an estimator. This avoids either a full
KNN search on X at query time, avoids truncating a continuous kernel (causing discontinuity), and avoids
building a simplicial complex to allow for consistent barycentric interpolation. Local krr is a locally-defined,
nearly-interpolating model where the most expensive part of evaluation is a KNN query (for small k) on a
reduced set of model points M ⊂ X. It is non-parametric and locally-optimized, yet efficient and scalable.
We empirically demonstrate interpolation ability, generalization accuracy, and efficiency of this new local
krr model by comparing with global models, discontinuous local models, and non-learned interpolating local
models. For completeness, we also identify some standard data assumptions under which we can guarantee
our model still achieves convergence in the standard global ℓ2 sense.

2 Background and Related Work

Kernel Ridge Regression estimator. Let (X, y) ⊂ Rd × R be a set of n observed data points with
explanatory variables in X and response variable in y. We will leverage a positive definite kernel k : Rd ×Rd →
R, and will by default use the un-normalized Gaussian kernel k(x, q) = exp(−∥x− q∥2/b2) for a bandwidth
parameter b > 0. This gives rise to a kernel matrix K ∈ Rn×n where Ki,j = k(xi, xj) for xi, xj ∈ X. The
kernel regression estimator at a point q ∈ Rd has the form: µ(q) =

∑n
i=1 αik(xi, q), where α is known as

dual coefficients of KRR, e.g. in Murphy (2012). The kernel ridge regression (krr) estimator augments the
standard least squares formulation with a ridge term to regularize towards a simpler model with a robust
solution. Specifically, given a ridge parameter η its goal is to minimize

∑n
i=1(µ(xi) − yi)2 + ηαTKα, for

which the optimal α can be solved as α = (K + ηIn)−1y.

Extensive work has shown the generalization properties of and risk bounds for krr (c.f. Steinwart et al.
(2009); Eberts & Steinwart (2013); Cui et al. (2021)). In an idea related to our proposed local krr extension,
Zhang et al. (2013) designed a scalable variant of krr that splits the data into parts and takes their average.
The main distinctions with our local krr approach are that Zhang et.al.’s model (a) splits data randomly,
not defined by local structure, (b) enforces a global bandwidth parameter so cannot adjust to local variation
in data density and model complexity, (c) does not aim to or achieve interpolation.

Other work, knn-svm Hable (2013) and local-svm Meister & Steinwart (2016), also considered kernel regression
models where the data is split to form many smaller models, and these works defined the splits into spatially
contiguous regions – as does our method. However these (a) local-svm combines local models into a full
one by selecting a nearest one (different from our weighting scheme) and does not ensure global continuity
since the models do not match at the boundary between nearest models. For knn-svm, the model is defined
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implicitly, and built at query time on the k nearest points – so the issue persists. (b) Neither aims for, or
analyzes, the (near-)interpolation properties. (c) local-svm defines local regions by volume, and hence do not
refine subject to local data density.

Interpolation Learning. Recent work (Belkin et al., 2018b; Bartlett et al., 2020; Liang & Rakhlin, 2020)
has observed that state-of-the-art methods for large complex models (e.g., deep learning, those exhibiting
double descent (Belkin et al., 2019a)) which have more parameters than data tend to perform best on
out-of-sample data. Belkin et al. (2018b) established a theoretical foundation of generalization error analysis
of such phenomenon based on the local interpolation scheme by using an unusual kernel called a singular
kernel Shepard (1968). Follow on work (Belkin et al., 2019b) showed that Nadaraya-Watson kernel regression
(NWKR, a form of kernel regression that does not “learn” the α parameters) with a singular kernel has a type
of guarantee of statistical optimality. Liang & Rakhlin (2020) explained how using a nonlinear kernel, in the
high-dimensional setting (e.g., d > n), and with the ridge parameter η goes to zero, global krr can achieve
zero training error and generalize well on new data; see also related results of Liu et al. (2021); Elkhalil et al.
(2020); Karoui (2010). However, we are unaware of comparable work about generalization for krr with ridge
parameter η = 0 or small, and in low or moderate dimensions (n > d).

Belkin et al. (2018b) identified another method to learn an interpolating model to (X, y) without using kernels.
This method builds a simplicial complex on X and simply interpolates the values of each yi within each
simplex using xi as a vertex (e.g., using barycentric coordinates). They show for data generated by smooth
manifolds, this will converge with enough samples. However, the size of a simplicial complex (combinatorially
describing each simplex) unfortunately grows exponentially in the dimension d. While our work is inspired by
this, it devises a new interpolation scheme that does not rely on the simplicial complex – it only uses (fast)
nearest neighbor searching. We also show similar convergence analysis is amenable to our method.

Fast Nearest Neighbor Search. The main computation cost of our algorithm will be invoking KNN
search and its relatives. This is an area of computer science that has seen enormous recent progress (Arya &
Mount, 1993; Andoni et al., 2015; Li et al., 2019; Ram & Sinha, 2019; Bernhardsson, 2021; Johnson et al.,
2021), and is nearing maturity in theory and practice. There are several related operations such libraries
can perform, which we will employ in our algorithms: p-NNX(q) returns the p nearest neighbors of q in
X; p-nnX(q) returns only the pth nearest neighbor of q in X; and rangeX(q, r) returns all points in X
within a distance r from q. For instance, on 100-NNX(q) queries (e.g., on SIFT1M (Jégou et al., 2011) with
n = 106, d = 128), libraries can return beyond 1000 queries a second (Bernhardsson, 2021). We employ a
state-of-the-art method FAISS (Johnson et al., 2021).

3 Local Kernel Ridge Regression

Consider again the dataset X ⊂ Rd. Instead of building one global krr model over the X, we propose a
data density-adaptive localized version of KRR.

3.1 Constructing Local KRR

To construct the local krr model, we first need to determine a set of model points M ⊂ X. Then build a
model µj around each model point mj ∈ M .

Determine M . We employ the following method to choose the set M . It is iterative, and starts with an
arbitrary point m1 = xi ∈ X as the center of the first region. It then sets the radius of m1 so that it contains
exactly ℓ points. We maintain for each point xi ∈ X by how many regions it has been covered. In each
iteration, we choose an arbitrary (this is done at random) point that has been covered fewer than t times. In
particular, if there are some points which have never been covered, we choose among these first. If all points
have been covered at least j (j < t) times but some only j + 1 times (again j + 1 < t), then we choose a
new center among those covered only j + 1 times (not ones covered j + 2 times). This is repeated until the
coverage of each point is at least t times.
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Learning the local models. When building the local krr, for each model point mi ∈ M , we determine
ℓ-nnX(mi) and bi = ∥mi − ℓ-nnX(mi)∥. The bi becomes the bandwidth for the kernel k used in krr,
following similar approaches for variable bandwidth selection (Loftsgaarden & Quesenberry, 1965; Terrell
& Scott, 1992; Fan & Gijbels, 1992). Next we retrieve the nearby points on which to build our model
Xi = rangeX(mi, λ · bi). Here λ > 1 is an expansion factor; by default λ = 3; a common choice of where
to truncate a kernel (Robert, 1995). It ensures the points used to build each model sufficiently cover the
neighborhood beyond 1 bandwidth, and also ensures the models provide sufficiently overlapping coverage of
X for guarantees on evaluation. In practice, we keep λ small so that the models are constant size and run
efficiently.

Now we can construct our local krr model µi, so it evaluates a query point q ∈ Rd as µi(q) =∑
xj∈Xi

αjk(xj , q), where α = (Ki + ηI)−1y(i), Ki is the kernel matrix K restricted to Xi, and y(i) ∈ R|Xi| is
the restriction of y to points in Xi. We summarize the training of the local krr model in Algorithm 1.

Algorithm 1 Local krr Training
1: Determine M .
2: for mi ∈ M do
3: Get ℓ-nnX(mi); set bi = ∥mi − ℓ-nnX(mi)∥.
4: Retrieve Xj = rangeX(mi, λbi)
5: Learn krr model µi(·) on (Xi, y

(i)) with bi.
6: end for

3.2 Evaluating Local KRR

To evaluate at a query point q ∈ Rd, instead of using the single evaluation function µi(·), we use a weighted
average evaluation based on the k closest model points Mq ⊂ M . This only needs a fast Mq = k-NNM (q) call
over the model points and the rest is pre-trained. Let t ≥ k ≥ d+2, as we will see in Section 4.1, this will allow
us to provide results on continuity of the local krr model. We generally use t = k = d+ 3 to be conservative.
The evaluation of a query point q is then a weighted average over these k models µ(q) =

∑
mi∈Mq

piµi(q)
with the proportion values pi ∈ (0, 1] and

∑
pi = 1 explained next.

KNN Model Interpolation. Given a query point q ∈ Rd, let Mq = m1,m2, . . . ,mk ⊂ M be the k-nearest
neighbors to q in M . Set rj = ∥q −mj∥. Adopt the convention that rj ≤ rj+1. Assign weights to each of the
points in Mq as wj = (rk − rj)/(rk − r1). Observe that this ensures wk = 0 and w1 = 1. Finally, we assign
each model µj a proportion pj = wj/(

∑k
i=1 wi). We summarize how to evaluate µ(q) using KNN model

interpolation in Algorithm 2.

Algorithm 2 Local krr Evaluation at q

1: Get Mq = {m1,m2, · · ·mk} = k-NNM (q)
2: Let rj = ∥q −mj∥ for j ∈ [1...k]
3: Set weight wj = rk−rj

rk−r1
for j ∈ [1...k]

4: Return the weighted average evaluation of q as: µ(q) =
∑k

j=1
wj ·µj(q)∑k

j=1
wj

4 Properties of Local KRR
The desired properties for our regression model µ are:

1. it adapts to the local density
2. it is efficient to evaluate near data X
3. it is continuous
4. it (nearly) interpolates data points
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The adaption to the local density follows by how we adaptively choose model points M , set the bandwidth,
and will be demonstrated empirically in Section 5.

The efficiency is due to each model being built on a constant number of points (determined by constant
parameters ℓ and λ). After selecting model points, each training requires a fast rangeX call, and is then
constant time training. Similarly, the evaluation requires a fast k-NNM call, and then evaluating the k
pre-trained models, which each require a constant (depending on ℓ and λ) amount of operations. We
demonstrate its empirical scalability in Section 5.

We show the continuity and the (near)-interpolation properties in the following two subsections.

4.1 Continuity of Local KRR

Some technical calculation-focused proofs are deferred to Appendix A.

Interpretation as NWKR estimator. We first note that weighted interpolation of the local models can
be interpreted as a variable-bandwidth Nadaraya-Watson kernel regression (NWKR) estimator with a triangle
kernel K(q,m) = max{0, 1 − ∥m− q∥/h} with bandwidth h = rk chosen as the distance to the kth nearest
neighbor model. Under NWKR, let W =

∑
mi∈M K(q,mi) and the estimator at q is 1

W

∑
mi∈M wiµi(q). With

this triangle kernel, only the nearest k− 1 models have non-zero weights, which are K(q,mi) = 1 − ri/rk and
(via multiplying by rk/(rk − r1)) are proportional to the weights considered in our interpolation wi = rk−ri

rk−r1
.

While the continuity of fixed-bandwidth NWKR is known (Ferraty et al., 2011), the following analysis can be
interpreted as analyzing the continuity for this variable bandwidth condition under the triangle kernel.

Continuity of KNN Interpolation. The first step towards formalizing the continuity of local KRR is to
understand the continuity of the KNN interpolation scheme. Consider continuously moving the position of a
query point q. As any model point moves into the set of k nearest of q, its weight is initially zero. So there is
no boundary effect discontinuity in the contribution of the nearest k models when suddenly a different set of
points are the k nearest. Also, when two points change their relative position in the sorted order, they have
the same weight. So again there is no discontinuity in the weight as the relative order of model points change
within that nearest k.

To formalize that KNN interpolation proportions (the pj values) are continuous in choice of q, we only need
to assume that M is in general position (Todd, 1969); that is, no d+ 2 points are all equidistant from any
query point. We prove a Lipschitz bound with respect to the movement of q, and it will depend on a quantity
R̄k = 1

k

∑k
i=1(ri − r1). Recall, that rj is the distance from q to the jth closest model point. For k ≥ d+ 2,

and M in general position, then R̄k > 0.

The Lipschitz factor will be smaller when (rk − r1) and R̄k is large. The same is true for a simplicial
interpolation based on the standard Delaunay complex Aurenhammer et al. (2013). It is common when
dealing with that complex to assume general position, since it is not well-defined otherwise.

Let Rk =
∑k

i=1(rk − ri). Recall the proportion pj for model µj in the weighted average is normalized by the
total weight, and is written

pj = rk − rj

rk − r1

(rk − r1)∑k
i=1(rk − ri)

= rk − rj

Rk
.

Now we need to consider moving the query point q ∈ Rd by some small amount δ ∈ R. To formalize this
consider some other point q′ = q+ δu, where u ∈ Rd and ∥u∥ = 1. So the perturbation is a change in Rd, but
we will only care about the magnitude δ.

Lemma 4.1. Consider moving the query q a distance at most δ ≤ R̄k

4 . The proportion of model µ comprised
of model µj, denoted pj, changes by at most 4δ/R̄k.

Now make a stronger assumption on M , so it is evenly distributed. Its density may change, but it should do
so in some local way. For γ ≥ 0 we say M is (γ, k)-distributed if any point q ∈ Rd satisfies R̄k/rk > γ. If a
point set is (0, d + 2)-distributed, it is degenerate in the sense that d + 2 points are equidistance to some
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point q, and so not in general position. For k ≥ d + 2 we can expect γ > 0. We can now understand the
continuity bound Lemma 4.1 in terms of γ.
Corollary 4.2. For model points M that are (γ, k)-distributed, consider moving the query q a distance at
most δ ≤ R̄k/4. The proportion of model µ comprised of model µj, denoted pj, changes by at most δ

rk

4
γ

Proof. Recall that this implies R̄k

rk
≥ γ if M is (γ, k)-distributed. Thus R̄k ≥ γrk, and δ/R̄k ≤ δ/(rkγ).

Let us interpret this bound. As a point q moves a distance δ, then the proportion that a model can change
moves at most proportional to δ; it has a Lipschitz parameter 4

rkγ . This parameter has two parts.

This first is rk; this has the same unit and scaling as the data. All Lipschitz bounds that convert between
two things with different units (e.g., q and pj) need some such term to make sense. In this case, however, we
note that rk is local. That is, if the local density of points changes, then the change in effect from q on µj

also changes. Note that using the more generic form in Lemma 4.1 had a similar effect.

The second part is γ, which is a notion of how close a point set is to degeneracy, measured in a density
agnostic way. This value has no units, so it does not interfere with the properties discussed about rk. Now
recall that as the point set becomes more degenerate, then γ goes towards 0. That makes the stability worse;
a smaller change in q can effect a larger change in pj . So less degenerate distributions M have more stable
relationship between the movement of the query, and the change in the functions used.

Local KRR model stability. Now based on the Lemma 4.1 and Lipschitz continuity of each µj we can
show that the model µ is Lipschitz continuous.
Theorem 4.3. Assume M is (γ, k) distributed, for any µj ∈ M , for q, q′ ∈ Rd with ∥q − q′∥ = δ ≤ R̄k/4
and |µj(q′) − µj(q)| ≤ L · δ and µj(q) ∈ (−T, T ), then |µ(q′) − µ(q)| ≤ 4δ(k−1)T

R̄k
+ Lδ.

From the Theorem 4.3 we can see that our model µ is Lipschitz continuous bounded by a constant depending
on the Lipschitz constant of each µj and also depend on the range of each µj . And a bounded range of µj in
[−T, T ] is common for kernel ridge regression (Steinwart et al., 2009; Eberts & Steinwart, 2013; Meister &
Steinwart, 2016). The (k − 1) shown in the bound is typically O(d), e.g. k = d+ 3.

Let’s compare this to the simplicial-barycentric interpolation (Belkin et al., 2018b). Both require general
position, although ours can loosen this requirement by increasing k. Theirs relies on knowing the (d+ 1)-
simplex (e.g, triangle in R2) that a query point lies in to determine the proportions. Our KNN interpolation
does not, and only needs the k-nearest neighbors. As the complexity of the simplicial complex grows
exponential in d, ours should be more generally applicable.

4.2 Local KRR (Nearly) Interpolates (X, y)

We now show how krr and our proposed local krr model nearly interpolates a data set (X, y) ⊂ Rd → R.
We say a function g : Rd → R ψ-interpolates (X, y) if for all (xi, y) ∈ (X, y) we have that |g(xi) − yi| ≤ ψ.
While a kernel regression model can 0-interpolate any data set, it is unstable, and may result in a extreme
model, e.g., with very large gradient. However, for a ridge model to nearly interpolate, we need to include
some assumptions on the niceness of the data, otherwise, the ridge regularization will force the learned model
to favor other simplicity factors over fitting the data.

Small noise, good fit assumption. We now describe a noise property for data (X, y) ∈ Rd × R, for
kernel ridge regression models that leads to bounds in interpolation. It involves parameters for noise ν and
goodness of fit A. We say data that satisfy this have an (ν,A)-fit. This assumes a known reproducing kernel
(e.g., a Gaussian) with a known bandwidth b.

Specifically, (ν,A)-fit data (X, y) should be so that for each yi there is a y′
i so |yi − y′

i| ≤ ν and so there exists
a model fα̃(q) =

∑
xj∈X α̃jk(xj , q) so that fα̃(xi) = y′

i and so the the norm α̃T Kα̃ ≤ A. We think of this fα̃

as a potential generating model.
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For any reproducing kernel k, and any data where xi ̸= xj for all i ̸= j and yi ∈ [−T, T ] with T bounded,
there exists some interpolating solution. However, this solution is often unstable (involving K−1), and so
a small ridge term η is added, and solve for α̂η = arg minα

∑
i(yi − fα(xi))2 + ηαT Kα instead. By duality,

there exists some decreasing function of η we call h(η), so the ridge solution α̂η is the one that minimizes∑
i(yi − fα(xi))2 restricted to αT Kα ≤ h(η). Hence, for any reproducing kernel K, and data set (X, y) it is

(ν,A)-fit for some parameters ν and A. The ones with very small ν and small A are those where points with
nearby xi values also have similar yi values.

As motivation for this model, we consider data generated from some real smooth phenomenon with high
precision. So if y ∈ [−T, T ] we may expect ν/T < 10−6 is the amount of precision in the results. Similarly, if
the data X is well-spread and close explanatory values (xi) have similar response values (yi), the model will
not have heavy reliance on individual data points, and hence the corresponding model coefficients α̃j will be
bounded. For instance, when k(x, x) = 1, and fα̃ is built on a fairly uniform average over about k elements,
then α̃j ≈ yj/k and α̃T Kα̃ is roughly T 2.

Analysis of the small noise, good fit setting. Now we analyze the accuracy of the model f̂ = fα̂ where
α̂ = (K + ηI)−1y is chosen to minimize the standard sum of squared errors on (X, y) (the observed data, not
on (X, y′)) with a ridge penalty

Errorη(α) =
n∑

i=1
(yi − fα(xi))2 + ηαT Kα.

For (ν,A)-fit data, the potentially generating model α̃ satisfies that Errorη(α̃) ≤
∑n

i=1 ν
2 + ηA = nν2 + ηA.

Moreover Errorη(α̂) ≤ Errorη(α̃). To understand how well this interpolates, meaning how much deviation can
occur on a single data point, in the worst case this sum of squared errors is due to a single data point (xi, yi).
We can summarize in the following lemma.
Lemma 4.4. Consider an (ν,A)-fit data set of size n. Then for the learned α̂ = (K+ηI)−1y with corresponding
model fα̂, ensures that for each (xi, yi) it nearly interpolates so |yi − fα̂(xi)| ≤

√
nν2 + ηA.

Local Interpolation. Next we adapt the (ν,A)-fit assumption to a model that requires a local fit, with
adaptive bandwidth. With high density in X, this allows to reduce the bandwidth and fit more variation in
the yi values, relative to xi change. In sparse regions, larger bandwidths allow for smoother functions that
generalizes over a greater span. The next definition is based on the common bandwidth selection method via
the distance to the kth nearest neighbor.

We say a data set (X, y) and associated reproducing kernel k is locally (ν,A, ℓ)-fit if for any point xi ∈ X, we
can define a bandwidth as bi = ∥xi − ℓ-nnX(xi)∥, so that the data set Xi = ℓ-NNX(xi) is (ν,A)-fit.

This modeling almost directly applies to our proposed local krr algorithm. Under the local (ν,A, ℓ)-fit
assumption, each model µj constructed at a model point mj ∈ X nearly interpolates the data Xj = {x ∈ X |
∥x−mj∥ ≤ λbj} it is built on, with error at most

√
njν2 + ηA where nj = |Xj |. To apply this to the full

local krr model, we need a property on the relationship between M and X.

Consider two subsets X,M ⊂ Rd parameter ℓ, k > 0 and a real value λ > 0. For any x ∈ X let Mx,k ⊂ M
be the k points in M closest to x. And non-symmetrically, given any point m ∈ M let Xm,ℓ,λ ⊂ X be the
points in X that are within a distance λb(ℓ) from m, where b(ℓ) = ∥m− ℓ-nnX(m)∥. We say X,M ⊂ Rd are
(λ, ℓ, k)-balanced if for any point x ∈ X, for each m ∈ Mx,k we have that x is in Xm,λ,ℓ. This captures that
X and M have similar densities in a key way, and that their point sets do not vary in density too abruptly.
The difference in ℓ ̸= k allows for different sizes in |X| and |M |. In principal the ratio ℓ/k increases with
|X|/|M | (recall M ⊂ X), but will also depend on the intrinsic dimensionality in some way. Hence, we just
leave the two parameters separate. The factor λ > 1 (even after adjusting for size) accounts for some strange
boundary conditions and imbalance between the data sets. We define this as a radius λb(k), and not the
(λk)th closest point since the use of λb(k) corresponds to how we build a model around each m using a kernel
with bandwidth defined as b(k).
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Theorem 4.5. If the data X and model points M are (λ, ℓ, k)-balanced, and locally (ν,A, k)-fit, then µ built
using local krr with ridge parameter η, region expansion λ, and bandwidth set bj = k-nnX(mj), then µ will
(
√
nmax ν2 + ηA)-interpolate (X, y), where nmax = maxmj∈M |Xj |.

Proof. The (λ, ℓ, k)-balanced assumption implies that at any point x ∈ X, then k nearest neighbors in
M = {m1, . . . ,mk} (which are used to create the model µ at x) have x in the set Xj defined by each mj . By
the locally (ν,A, k)-fit assumption, we know each local model µj will (

√
njν2 + ηA)-interpolate on the data

in Xj including x, via Lemma 4.4.

Finally, we recognize that µ is a weighted average of the models associated with M (that is µ =
∑k

j=1 pjµj

for
∑k

j=1 pj = 1). Hence, if each is at most
√
njν2 + ηA ≤

√
nmax ν2 + ηA far from interpolating x, then

the total interpolation error is at most
∑k

j=1 pj

√
nmax ν2 + ηA =

√
nmax ν2 + ηA.

An important implication is that local krr guarantees to be closer to interpolation than global krr.

4.3 ℓ2-Convergence Rate of Local KRR

In this subsection, we show that local krr– in addition to being locally adaptive, near-interpolating, and
continuous – also can achieve standard learning bounds. Specifically we provide generalization error bound in
an ℓ2 sense under some standard and mild assumptions. We provide two bounds depending on the algorithms
behavior as the number of data points goes to infinity; we either consider (a) the number of local models is
fixed and the number of data points per model goes to infinity, or (b) the number of local models also goes to
infinity but the number of data points per model is fixed. In either case, we need to establish a few standard
assumptions on the models built.

(A1): We assume we use clipped krr for each model (Steinwart et al., 2009). That is, for a local data set
(Xi, y

(i)) assume that T1 = min{y ∈ y(i)}, T2 = max{y ∈ y(i)} that T = T2 − T1 and that if we predict the
learned local model µi(x) returns a value outside of some [T ′

1, T
′
2] where T ′

2 ≥ T2, T ′
1 ≤ T1, and T ′

2 − T ′
1 < 2T ,

then we clip to the nearest value in the range [T ′
1, T

′
2]; namely, T ′

1 or T ′
2. Note that this cannot increase the

empirical error, and will not affect the near-interpolation property or the continuity property of our model.

(A2): Let Bi = {x ∈ Rd | ∥x − mi∥ ≤ λbi} be the ball on which the ith local model is learned, and for
which its convergence properties will be well-defined. Local krr requires k local models (recall k = Θ(d) is
a constant), to evaluate a query. Let Bk = {x ∈ Rd | |{Bi | x ∩ Bi ≠ 0}| ≥ k} be domain within at least k
such balls, and is where the local models are defined. We assume our data is drawn from a measure σ whose
support is contained in Bk. Note that the way we determine M (ensuring X ⊂ Bt with t ≥ k) in Section 3
guarantees that the support of σ is in Bk as the number of models |M | goes to infinite with n. And in the
case where M is fixed we assume this has been achieved.

(A3): Assume f∗ : Rd → R is a true generating model of our data (X, y) and that f∗ ∈ L2(Rd) ∩ L∞(Rd),
where Lp are standard Lebesgue spaces in Rd. As a smoothness assumption we make one of two refinements.
Either (A3.1) we assume f∗ ∈ Bs

2,∞(σ)) where Bs
2,∞(σ) is a Besov-like space with smoothness parameter s; see

Eberts & Steinwart (2013) for standard definitions of function spaces. Or (A3.2) we assume yi = f∗ + ϵi, and
f∗ satisfies a (C1, α)-Hölder condition s.t., |f∗(x) − f∗(x)| ≤ C1 · ∥x− x′∥α. We also assume the conditional
variance of ϵi as Var(yi | X = xi) satisfies a (C ′

1, α
′)-Hölder condition.

Next we observe that our global prediction µ is the weighted average µ(x) =
∑k

j=1 pjµj(x) of k local
predictions, where each pj ∈ [0, 1] and

∑k
j=1 pj = 1. Hence if for true function f∗, each µi satisfies

E∥µi − f∗∥2
2 ≤ Rn for some diminishing error rate Rn over the domain Bi, then we have

E∥µ−f∗∥2
2 = E∥

∑
j

pjµj−f∗∥2
2 = E[(

∑
j

pj∥µj−f∗∥2)2] ≤ E[(
∑

j

p2
j )(

∑
j

∥µj−f∗∥2
2)] ≤ kE∥µj−f∗∥2

2 = kRn,

so the global model µ also achieves that error rate, up to a constant factor k. Thus what remains is to show
each local model achieves a certain error rate; it will then generalize to the global model. For the fixed
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number of models, we use Eberts & Steinwart (2013)’s optimal krr analysis, and as the number of models
going to infinity we adapt Belkin et al. (2018a)’s analysis of a linear interpolation scheme.

Fixed number of local models. When we assume the number of local models |M | is fixed, each local
model observes at least n′ points, as n goes to infinity, and hence n′ goes to infinity. Under assumptions
(A1), (A2), and (A3.1) we can apply our settings to Theorem 3.1 and Corollary 3.2 in Eberts & Steinwart
(2013), which gives the near-optimal (up to ξ) ℓ2 error rate for krr.
Lemma 4.6. For constant C > 0 and any ξ > 0, a local model µi observing n′ points (Xi, y

(i)) ∈ Rd × R
from σ, f∗ satisfying (A3.1), and learning according to (A1), would have

Eσ|Bi
∥µi − f∗∥2

2 ≤ C · (n′)− 2s
2s+d +ξ.

Applying the observation that local krr is a weighted average of local models, and so inherit their convergence
bound (up to constant k), we can state.
Corollary 4.7. Consider for data (X, y) ∈ Rd × R from σ, f∗, under assumptions (A1), (A2), and (A3.1),
as the number of data points n goes to infinity, with a fixed set of local models each observing at least n′ data
points. Then the model µ learned by local krr satisfies, for some constant C > 0, and any ξ > 0,

Eσ∥µ− f∗∥2
2 ≤ kC · (n′)− 2s

2s+d +ξ.

Number of local models goes to infinity. When the number of points in each local model is fixed, but
n goes to infinity, so the number of local models goes to infinity as well, then we adapt the approach of Belkin
et al. (2018a) that considered a linear interpolation scheme. They assume the strong Hölder smoothness in
(A3.2), and consider what happens as δi, the radius of each local piece, goes to 0. Their approach shows that
with (A3.2) as δi is small enough, then a constant prediction for each region is sufficient, and we can use
that T is bounded in (A1) to show each local model µi is close to the constant function. Their Theorem
3.2 bounds E∥µ− f∗∥ using 4 terms. Similar to how they observe in Corollary 3.3 as n → ∞ three of those
terms go to 0 in our setting: the first since by (A2) we assume the support of σ is in Bk, and the second
and third since by smoothness (A3.2) and bounded T in (A1) that as δi = λbi → 0, then our prediction µi

is always within T of the constant function, which is good enough. Taking the weighted average of k local
models, only the variance (yi − f∗(xi)) remains, as follows:
Lemma 4.8. Consider for data (X, y) ∈ Rd × R from σ, f∗, under assumptions (A1), (A2), and (A3.2).
For δmax = λmaxi bi, the model µ learned by local krr satisfies

Eσ∥µ− f∗∥2
2 ≤ 2k

2 + d
Exi∼σ[(yi − f∗(xi))2] + kC2

1E[δ2α
max] + 2k

d+ 2C
′
1E[δα′

max].

As the number of data points n and number of local models goes to infinity, δmax = λmaxi bi → 0, we have

Eσ∥µ− f∗∥2
2 ≤ 2k

2 + d
Exi∼σ[(yi − f∗(xi))2].

5 Experimental Results

We examine the performance of local krr against alternative models, and evaluate by several metrics. For
the examples for d = 2 we have ground truth values on a fine grid (XG, yG), in addition to input data (X, y).

Prediction Errors: For tasks in R2 it is useful to plot the error ei = µ(xi) − yi over (xi, yi) ∈ (XG, yG) on
a fine grid, with blue as a positive error, red as a negative error, and white near 0 error, in Figure 2.

RMSE: The root mean square error, rmse =
√

1
n

∑
xi∈XG

(µ(xi) − yi)2. This is measured over a fine grid
(XG, yG) or test data.

Worst Case Error: The worst case error, denoted ℓ∞, shows how far the model is from interpolating the
true data (XG, yG): ℓ∞ = maxxi∈XG

|µ(xi) − yi|.

9
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Figure 1: Fit models on synthetic data in d = 1.

Relative Error: Relative error εi = ∥yi−µ(xi)∥
∥yi∥ is relevant for our d = 3 physics simulation example. We

show maximum over a held out set.

Average Curvature: This captures the smoothness of the model for d = 1. The discrete curvature at a
point (xi, yi) can be defined Ci = ∥x′′

i y′
i−x′

iy′′
i ∥

((x′
i
)2+(y′

i
)2)3/2 , where x′

i, y′
i are discrete derivatives, and x′′

i , y
′′
i are the

discrete second derivatives. The Average Curvature avgC is the average on all grid points.

Tuning Hyper-parameters. For clarity we define several variables for local krr, but some (like λ and k)
do not noticeably affect the result, other than in runtime, after their constraints are met. There are two
modeling parameters that one could tune: the points per local region ℓ to control how large the local models
should be, and ridge parameter η to control how close to interpolating the data. Except in illustrative 1d
examples, we choose these via grid search on a training set using RMSE. We consider ℓ ∈ {10, 20, 30, 40,
50} and η ∈ {1e-7, 1e-5, 1e-3, 1, 10}. For global krr (build one single global regression model using krr),
singular kernel method, and NWKR (with Gaussian) we select bandwidth parameter b from b ∈ {0.01, 0.05,
0.1, 1, 5}, and global krr also choose η from {1e-7, 1e-5, 1e-3, 1, 10}. In the real data experiment of methane
data, we also compare knn-svm (Hable, 2013) and local-svm (Meister & Steinwart, 2016) with our methods.
For knn-svm, we tune k ∈ {10, 20, 30, 40, 50} and η, b in the same ranges as local krr. For local-svm we
tune, on each local model, radius r ∈ {0.05, 0.1, 0.2, 0.3, 0.4} and η and b as elsewhere. For RBF-Interpolator
compared in 2D simulation example, we tune number of neighbors in {10, 20, 30, 40, 50}. We observe in all
case that the selected values are typically near the median one, and do not largely affect the evaluation in the
middle of these ranges.

5.1 1D Simulation

As an illustrative warm-up, we compare for d = 1 our method (local krr) with singular kernel NWKR (Belkin
et al., 2019b), NWKR with Gaussian kernel, global krr with Gaussian kernel, Local-SVM (Meister &
Steinwart, 2016) and KNN-SVM (Hable, 2013). The first five points match those in (Belkin et al., 2019b), and
we extend more to show varying density. In Figure 1, the η is the ridge parameter; the b is the bandwidth; the
a is the exponent parameter in singular kernel (Belkin et al., 2019b). We calculate the avgC for all the fitted
curves shown in the Figure 1 and the average curvature values from top-left to bottom-right are {12.93, 11.85}
for global krr. {12.05, 11.01} for local krr, {171.99, 12.19} for Gaussian-NWKR, {17.79, 18.18} for local
SVM and KNN SVM, and {20.07, 133.14} for singular-NWKR, Our local krr interpolates the data, and is
the most smooth one with smallest avgC = 11.01.

The singular-NWKR interpolates the data, but exhibits strange artifacts of either cusps at the points if
bandwidth too small, or blocky gaps if bandwidth too large. We attempted to tune parameters to remove
these, but could not; these artifacts are even more prominent in the examples in their paper (Belkin et al.,
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Figure 2: Synthetic data. First line, L→R: input data, true model, then prediction errors on knn-svm,
local-svm. Second line, L→R: prediction errors on local krr, RBF-Interpolator, simplex, global krr.

2019b). The second case also has large average curvature. The Gaussian-NWKR either does not interpolate
the data (bottom figure) or interpolates but is similarly blocky and has high curvature (top figure). The
global krr may not interpolate the data (top figure), but in this small example can be tuned to perform
reasonably well (bottom figure). As the number of data points n grows, it will be harder to interpolate; see
Lemma 4.4. We used the following parameters: k = 3, η = 1e-5, b = 0.1 for knn-svm and for local-svm radius
r = 0.5, η = 1e-5, b = 0.1. One can observe strange behavior in between the data points: large drops or
discontinuities.

5.2 2D Simulation

As we discussed in Section 3, local krr can adapt to the local density of the data. We design a 2D experiment
where x1 and x2 are explanatory variables, and a response variable is generated with an undulating pattern,
shown in Figure 2. The input data changes in density as the response variable requires more resolution More
specifically, we place a fine grid with a data point (x1, x2) ∈ [−5, 5] × [−5, 5] every 0.05, which is 201 by 201
grid. The training data is selected using i.i.d. Bernoulli trials with probability equal to

p(x1, x2) = max{0.05, log10[1 + log10(1 + 1
2 · (x1

2 + x2

2 )4)]}.

And the response variable y is defined as:

z1 =
√

2
2 x1 +

√
2

2 x2, z2 = −
√

2
2 x1 +

√
2

2 x2,

y = sin(2z1|z1|) + sin(1
2z2|z2|) + 5 cos(z1) sin(z2).

In Figure 2(left), the blue points are training data (x1, x2)’s chosen by Bernoulli trials, and the red points are
model points. Model points are denser when the training data is dense (i.e. in the upper right and bottom
left corner). The second plot shows y changes much faster in the top-right and bottom-right regions (the
blue color means positive values of y, the red color means negative values). The data density distribution is
similar to the variation of the function value in y.

We compare methods on this 2D synthetic dataset, showing the prediction errors on grids (Figure 2), and rmse
and ℓ∞ error in Table 1. This experiment also shows Belkin et al. (2019b)’s Simplex Method and python’s
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knn-svm local-svm local krr global krr RBF-Interpolator simplex method
rmse 0.098 0.225 0.021 0.248 0.063 0.024
ℓ∞ 3.17 9.67 2.24 3.76 2.44 2.73

Table 1: rmse and ℓ∞ error on 2D synthetic data.

RBF-Interpolator which does not have continuity guarantees. To tune hyper-parameters, we randomly select
10 percent of the data from training data as validation, then perform grid-search over hyper-parameters
space. We use the best performed hyper-parameters on that validation set to evaluate the whole 201 by 201
grid. Details on a more thorough sensitivity analysis for local krr is in Appendix B. Local krr performs
better than global krr, and much better when the input data is sparse (in the middle). While global krr
and local SVM demonstrates significant error in many regions, for the interpolation-based ones (local krr,
RBF-Interpolator, and simplex) the error is mainly concentrated near the boundaries. We also note the
simplex method, even in 2d where the complex size can be linear, it is about 40 times slower than local krr.

5.3 Real Data: Slovakian Precipitation

We next compare local krr with global krr on a benchmark GIS dataset of Slovakia precipitation (Neteler
& Mitasova, 2008). We choose up to 16000 training points randomly – beyond that size takes too long for
global krr, and is already too expensive (more than 12 hours) for the Simplex Method – retaining 180,000
for testing. Figure 3(left) shows visually that local krr has less extreme prediction errors than global krr.
We also plot the rmse and ℓ∞ error as a function of training size in Figure 3(right), averaged over 5 trials,
showing 1 std range. Local krr has the least error under RMSE for all sample sizes, and always near the
least error and the least at large sample sizes compared to any other method under ℓ∞. Although local-svm
and knn-svm are conceptually similar, they perform worse empirically.

Figure 3: L→R: Prediction error, RMSE, and ℓ∞ error for Slovakian Percipitation

5.4 3D Combustion Simulation

We next apply these techniques to a physics-driven combustion simulation. The explanatory variables X
measure the mass fraction and temperature, and the response variables y capture the so-called source terms
required to perform physics simulations. The data was gathered from a high-fidelity simulation of methane
using the gri12 mechanism (Frenklach et al., 2021) in Spitfire (Hansen et al., 2020), and then its dimension
reduced to 3 using a linear transform (Sutherland & Parente, 2009). This sort of example directly motivates
the model we study: the data has variable density and requires locally different resolution, the data is of high
accuracy so the model should basically interpolate the data, and such a model is to be used in simulating a
PDE so is required to be smooth. Figure 4 shows the simulation lines and variable density. As such we use
relative error to show how the model fits the observed data in a way that adapts to the local scale. We still
build a single set of model parameters α for each local model.
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The methane data set has n = 44,000 observations. We evaluate under a 67/33 train-test split under five
different random seeds then, report the average and the standard deviation of the maximum relative errors
(max rel. er) from five trials. We compare our local krr with 4 other methods including global krr, NWKR,
Simplex method, singular kernel method, knn-svm and local-svm. Although all methods can achieve high
r-squared value greater than 0.95, in this combustion task, the maximum relative error is the more important
metric to guarantee that PDE simulations will work. From the results in the Table 2, we observe local krr
data has 1 order of magnitude less maximum relative error than the second best method, simplex method
(which takes about 10x as long as local krr in this setting). Compared to other methods, the improvement
in error is 2 to 8 orders of magnitude. This shows how local krr model is efficient, continuous, can adapt to
data locally, and nearly interpolate.

max rel.er (std dev)
local krr 5.58 (1.10)

global krr 2.01 e6 (4.70 e5)
NWKR (Gaussian) 7.26 e8 (1.15 e8)
NWKR (Singular) 2784 (52.2)

Simplex 66.35 (37.81)
knn-svm 4845 (828)

local-svm 719 (69.0)

Table 2: Maximum relative error
for combustion data, averaged
over 5 trials, and standard de-
viation.

Figure 4: Data points for combustion data, with vary-
ing density, color-coded by relative error (mostly near
0) from local krr.

6 Discussion

Main novelties. The main novelty of our paper is that it efficiently learns a locally-adapted regression
function that is (a) continuous and (b) nearly interpolates the training data. Most ML work does not strive
for either of these goals, but they are natural, especially in modern over-parameterized settings. For instance,
similar divide-and-conquer kernel methods are not careful to blend local models together and either have
discontinuities at model boundaries, or do not nearly-interpolate points near these boundaries. Other methods
that meet these goals (like singular NWKR or high-degree polynomial regression) do not adapt to the local
data properties, or (like building a simplicial complex) are very expensive.

Nearly interpolation property. The nearly interpolation goal is to have a local model precisely fit the
local data, with error tolerance for each interpolation points controlled by ν. Indeed the dependence on nmax
in our Theorem 4.5 shows that this is significantly easier for a locally-learned model (where n is small or a
constant) than a global model. For not every data set can KRR achieve small interpolation error (ν) without
a large ridge parameter η, and the data parameter A precisely characterizes this.

Time complexity and high dimensions. The time complexity is as follows where TN is the (practically
efficient, even in high dimensions) time for nearest neighbor search on N data points. Choosing model points
takes O(n(k + Tn)) time with a priority queue. Building models takes O(kn(Tn + ℓ2)) time if on average a
point is in O(k) models. Making a query/prediction takes time O(T|M | + kℓ). As k = O(d), that is linear in
dimension, and we can make the number of points in a model ℓ = O(1), hence these are very efficient, even
in high dimensions
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A Proofs for Continuity

We provide the proof that the interpolation proportions are Lipschitz continuous.

Recall, that rj is the distance from q to the jth closest model point. Recall R̄k = 1
k

∑k
i=1(rk − ri), and let

Rk =
∑k

i=1(rk − ri). And recall the jth weight is wj = (rk − rj)/(rk − r1). And the sum of all weights is
W =

∑k
j=1 wj The proportion pj for model µj in the weighted average is normalized by the total weight,

and is written

pj = wj

W
= rk − rj

rk − r1

(rk − r1)∑k
i=1(rk − ri)

= rk − rj

Rk
.

Now we need to consider moving the query point q ∈ Rd by some small amount δ ∈ R. To formalize this
consider some other point q′ = q+ δu, where u ∈ Rd and ∥u∥ = 1. So the perturbation is a change in Rd, but
we will only care about the magnitude δ.

Lemma A.1 (Lemma 4.1). Consider moving the query point q a distance at most δ ≤ R̄k

4 . The proportion
of model µ comprised of model µj, denoted pj, changes by at most 4δ/R̄k.

Proof. Under the δ-perturbation, each jth distance rj is updated to a value r′
j in the range [rj − δ, rj + δ]. So

(rk − rj) changes by at most 2δ, except for (rk − rk) which is always 0. Note this is true of the jth distance
even if the sorted order of the models change. It is also true of the term effecting the contribution of the
model that used to be ranked j, even if its ranking changes during this smaller perturbation of q.

Given the model µj is a pj proportion of model µ before the change, let p′
j be the proportion after the change.

Then we can analyze

pj − p′
j = rk − rj∑k−1

i=1 (rk − ri)
− rk − rj ± δ∑k−1

i=1 (rk − ri ± 2δ)

= rk − rj

Rk
− rk − rj ± 2δ
Rk ± (k − 1)2δ .

We first get an upper bound

pj − p′
j ≤ rk − rj

Rk
− rk − rj − 2δ
Rk + (k − 1)2δ

= rk − rj

Rk

Rk + (k − 1)2δ
Rk + (k − 1)2δ − rk − rj − 2δ

Rk + (k − 1)2δ
Rk

Rk

= Rk(rk − rj) + (rk − rj)(k − 1)2δ − (rk − rj)Rk + 2δRk

Rk(Rk + (k − 1)2δ)

= δ2(rk − rj)(k − 1) +Rk

Rk(Rk + (k − 1)2δ)
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Now using that (rk − rj) ≤ 1
j

∑k
i=1(rk − ri) ≤ 1

jRk we can show

pj − p′
j ≤ δ2(rk − rj)(k − 1) +Rk

Rk(Rk + (k − 1)2δ)

< δ2(rk − rj)(k − 1) +Rk

Rk(Rk)

= 2δ (rk − rj)(k − 1)
R2

k

+ 2δ 1
Rk

≤ 2δ
k−1

j Rk

R2
k

+ 2δ 1
Rk

≤ 2δ k − 1
jRk

+ 2δ 1
Rk

= 2δ (k − 1)/j + 1
Rk

≤ 2δ k
Rk

= 2δ/R̄k.

Similarly the lower bound, using that δ ≤ R̄k/4 implies 2kδ ≤ Rk/2, it can be shown as

p′
j − pj ≤ rk − rj + 2δ

Rk − 2(k − 1)δ − rk − rj

Rk

= rk − rj + 2δ
Rk − 2(k − 1)δ

Rk

Rk
− rk − rj

Rk

Rk − 2(k − 1)δ
Rk − 2(k − 1)δ

= Rk(rk − rj) + 2δRk − (rk − rj)Rk + 2(rk − rj)(k − 1)δ
Rk(Rk − 2(k − 1)δ)

= 2δ (rk − rj)(k − 1) +Rk

Rk(Rk − 2(k − 1)δ)

≤ 2δ
k−1

j Rk +Rk

Rk(Rk − 2(k − 1)δ)

= 2δ
k−1

j + 1
Rk − 2(k − 1)δ

≤ 2δ k

Rk − 2kδ

≤ 2δ k

Rk −Rk/2
= 4δ/R̄k.

18



Published in Transactions on Machine Learning Research (09/2022)

And then we need to provide the Lipschitz-continuity result applied to the full local krr model.
Theorem A.2 (Theorem 4.3). Assume for any µj ∈ M , for q, q′ ∈ Rd with ∥q − q′∥ = δ ≤ Rk/4 and
|µj(q′) − µj(q)| ≤ L · δ and µj(q) ∈ (−T, T ), then |µ(q′) − µ(q)| ≤ 4δ(k−1)T

R̄k
+ Lδ.

Proof. We start with upper bound,

µ(q′) − µ(q) =
k−1∑
i=1

(p′
jµ

′
j(q) − pjµj(q))

≤
k−1∑
i=1

(p′
j(µj(q) + Lδ) − pjµj(q))

=
k−1∑
i=1

(p′
j − pj)µj(q) + Lδ

≤
k−1∑
i=1

|(p′
j − pj)||µj(q)| + Lδ

≤
k−1∑
i=1

4δ
R̄k

|µj(q)| + Lδ

≤ 4δ(k − 1)T
R̄k

+ Lδ.

Then similarly for the lower bound we have:

µ(q′) − µ(q) ≥
k−1∑
i=1

(p′
j(µj(q) − Lδ) − pjµj(q))

≥
k−1∑
i=1

−|(p′
j − pj)||µj(q)| − Lδ

≥ −4δ(k − 1)T
R̄k

− Lδ.

B Hyper-parameter Sensitivity Analysis of 2D Simulations

We provide a sensitivity analysis of hyper-parameters of our local krr method in Table 5. It is based on a
10-fold cross-validation on training data for the 2D simulation in Section 5.2. In that 10-fold cross-validation,
each time we pick 10 percent of training data as the validation set, build the model based on the rest of the
training data, and record the rmse on the 10 percent predictions. We perform this procedure 10 times for
random scenario and report the average rmse.

We observe that there is very little variation with the choice of k (default is k = d+ 2 and continuity requires
k ≥ d+ 1) and λ (default is λ = 3, following literature). However, ℓ is somewhat sensitive. This is the main
scale parameter that controls how many data points are required to measure a distinct patch of the model. If
ℓ is too small, the modeling in that patch may be too noisy, and if ℓ is too large, it may miss numerous small
features. This is a problem dependent parameter – balancing the noise vs. the size of features – and so may
not be surprising it benefits from some tuning.
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k rmse
2 0.035
3 0.034
4 0.031
5 0.032

Table 3: rmse with fixed λ = 4,
ℓ = 20, tuned k

ℓ rmse
10 0.055
20 0.031
30 0.056
40 0.087
50 0.134

Table 4: rmse with fixed λ = 4,
k = 4, tuned ℓ

λ rmse
2 0.031
3 0.031
4 0.032

Table 5: rmse with fixed k = 4,
ℓ = 20, tuned λ
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